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ABSTRACT

We consider a class of polynomials, defined by /,(x) = (—1)" L*~"X(x), which are introduced by F.G. Tricomi.
We explain the role of the polynomials in asymptotics, especially in uniform expansions of a Laplace-type integral.
Moreover, an asymptotic expansion of /,(x) is given for n—co that refines results of Tricomi and Berg.

1. Introduction

The Laguerre polynomials can be written in the form

" n ntal i~y
Li¥x) = 2= [n —m L—)—m! , (LD
where n = 0,1,2,- - -, aeC. The polynomials considered here are defined by
Lx) = (=1 LZ¥™"x), (12)

which - although closely related to the Laguerre polynomials - are essentially different from them. For instance, the
degree of I, is not n but the greatest integer [n /2]inn /2.

The polynomials (1.2) are introduced by Tricomi [8], who used them in convergent and in asymptotic expansions
of certain special functions. See also papers of Berg [1], [2], and Riekstins [S], who too used the polynomials in asymp-
totic problems.

In this paper we consider a further application in the uniform asymptotic expansion of a Laplace-type integral.
Furthermore we discuss the asymptotic behaviour of /,(x) as n —o0, with special attention for values of x equalling
non-negative integers.

2. Uniform expansions of Laplace integrals.

We consider the integral

Fz) = ft)‘"'e_" f@)dt Q.0
0
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for Rez > 0, ReA > 0, z large, and where A may be large as well.

When A is restricted to a bounded set in the complex half-plane Re z > 0, an asymptotic expansion of (2.1) is
obtained by substituting an expansion of f at z = 0*. When we suppose that f is analytic at ¢ = 0 (more condi-
tions on f are given below) we obtain by using Watson’s lemma (see Olver [4]) the well-known expansion

Fyz)~ io M) gz Q22

as z—»o0 in the sector |arg z| <iw—8 < 3w. Here a, are the coefficients in the expansion
o0
fo=Zar
s =0

and &), = TA+s)/TA), s =0,1,2,---.
The expansion (2.2) loses its asymptotic character when A is large. For instance when A = §(z) then the ratios of
consecutive terms in (2.2) satisfy

d+1 s+A _
a.f

o), if a,540.

In [6] we modified Watson’s lemma and we obtained an expansion in which large as well as small values of A are
allowed. This expansion is obtained by expanding f atz = p = A\ /z, at which point the dominant part of the
integrand of (2.1), i.e., e ™, attains its maximal value (considering real parameters for the moment). We write

00

@)= 3 a;((t—py @3

s=0

and obtain by substituting this in (2.1) the formal result

Fyz) ~ § a,(p) P\ 27572 z>00, 24)
5=0
where
| S S - .
P,(\) = ™™ oj AleTH (1 —pwidt, p=A/z 2.5)

The functions P;(A) are polynomials in A. They follow the recursion (which is easily obtained from (2.5))

Piy) = s[P,(N) + AP (V) (2.6)
s =12,---, with initial values Po(A) = 1, P;(\) = 0. An explicit representation is obtained by expanding (r —p)
in powers of ¢. The result is
BN =3 QM) (=A @
r=0

Comparing (2.7) with (1.1), (1.2) we infer
PN =sVI(=N), s =012, -,
which relates the polynomials 2, (A) with the Laguerre polynomials.

The nature of expansion (2.4) is discussed in [6], [7]. It is supposed that [ is holomorphic in a connected domain
€ of the complex plane with the following conditions satisfied:
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@) the boundary 3Q is bounded away from [0,00);
(i) Q contains a sector S, g, with vertex at ¢ = 0, defined by
Sop = {(1€C| —a < arg t < B},
where « and B are positive numbers;
@) f() = &tP)as t—oo in §,p wherep is a real number.
Under these conditions the uniformity of the expansion holds with respect to p = A /z in a closed sector, with

vertex at t = 0, properly inside S,g. Error bounds for the remainders in the expansion are also given in the cited
references.
A simple example is f(t) =1/(1+t), in which event (2.1) is an exponential integral and
a,(w) = (—1¥ /(Q+py*!. The sector S,pis defined with « = B = 7—¢ (¢ small ). We have
2 (CIYPA)

eEN2) ~ 3

So @At @8

where E,(z) is the well-known exponential integral. This example shows quite well why the uniformity with respect to
X (or to p) holds: the degree of P (M) is [s/2), and its effect is amply absorbed by the denominator in (2.8).

Another feature suggested by (2.8) is that the expansion holds for A—oo, uniformly with respect to z, say
z 2z > 0. This in fact is true for the general case (2.4). It has consequences on the theory of asymptotic expan-
sions of Mellin transforms.

3. Asymptotic expansions of /,(x) as n—oo.

A generating function for the polynomials (1.2) is given by
o
e 1=z = 3 Lx)", |z|< 1, 3.1
n=0

where x may be any complex number; the condition on z may be dropped when x = 0,1,2, - -. Relation (3.1) is
easily verified by expanding both the exponential and binomial function and by comparing the coefficients in the pro-
duct with (1.1), (1.2).

Tricomi [8] investigated, among others, the asymptotic behaviour of /,(x) with n large. His final result, based on
Darboux’s method, can be written in the form
e

X
L(x) ~ —5—— S 4, nk, .
&) ~ T 2,47 ¢2)

where the coefficients 4, do not depend on n. The first few are
Ao = 1,4, = 3x(x+1), A, = x(x +1)x +2)(27x +13) /24. (3.3)

Observe that the right-hand side of (3.2) reduces to zero when x = 0,1,2,- - -, due to the reciprocal gamma function.
We cannot conclude that the polynomials reduce to zero as well, in that case; a better conclusion is that, probably,
L,(m) (m = 0,1,- - - ) is asymptotically equal to zero with respect to the scale {n ™% "*~'}. For this terminology we
refer to Olver (4], or to Erdélyi & Wyman [3].

From the generating function (3.1) it follows that /,(x) will exhibit a rather peculiar behaviour when x crosses
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non-negative integer values. Namely, the left-hand side of (3.1) is entire in z when x = 0,1,2, - - - . So, for large values
of n, the asymptotic behaviour of /,(x) will change considerably when x assumes these values. (In a simpler way this

occurs in the binomial expansion (1—z)* = % (ﬁ)(-—z)", where the coefficients vanish identically (n > x) when
x =012,---). "
Berg [1] observed that for m = 0,12, - - the polynomials have the asymptotic behaviour
m’l -m
L(m) ~ (~l)mm, n—00. 3.4)
This shows indeed that the values {/,(m)} approach the limit O faster than any negative power of n.

Summarizing the above remarks we have
L(x) =80n"*"" x 01,2, -,
Li(x) = &n*), x =0,1,2,...for any k.

To give a more complete and unifying description of both these forms we look for a representation
Ii(x) = Fy(x) + Gy(x), (3.5

where F,(m) =0,m =0,12,--- and G,(x) = o(n*) for any k and any x; moreover, F,(x) should have
Tricomi’s expansion (3.2) and G, (m) that of Berg given in (3.4).

A splitting as in (3.5) is obtained by using the integral
L(x) = -2%,-7¢Mdz’

zn+|

(3.6)

which is Cauchy’s representation of the coefficients in (3.1). The contour is a circle around z = 0 (with radius
smaller than unity), or any contour that can be obtained by deformation without crossing singularities (the only candi-

date is z = 1). In (3.6) the many-valued function (1—z)* assumes its principle branch, which is real and positive for
z<l.

When x5 0,1, - - - the singular point z = 1 furnishes the main contribution in the asymptotic behaviour of (3.6).
On the other hand, the dominant part of the integrand, which we consider to be e*z~", has a saddle point at
zq = n /x. When we take into account contributions from z = 1 as well as from z = z, we are able to give a com-
plete description of the asymptotic behaviour of /, (x).

The contour in (3.6) is deformed into the contour shown in Figure 1. We suppose, temporarily, that x > —1.

Im z

Figure 1. Contour for (3.6)
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In the notation of (3.5) we choose F, (x) to be the integral around the branch cut and G, (x) the contribution over
the vertical Re z = zo. On the lower part of the branch cut (1—z)* is written as (z — 1)* exp(i 7x), on the upper part
as (z — 1Y exp(—imx). So we obtain

F(x) = — six::rx f e"’f: :Il)“ dr=— silzn:x o X:fy" w* e~ f (u)du, 37
where
f@) = gy, gy = £t 1
The first coefficients in the expansion f(u) = fo+f\u + fou’+ - - are

fo=1,f1=3xf,=(27x+13) /24

So we obtain by Watson’s lemma

_sinmx_e* X fillx+k+1)
p .

Falx) ~ T n*tt &,
By using the reflection formula I'(—x)['(1+x) = —= /sinmx we obtain finally
ex © fk
Fy(x) ~ WEOF(H‘X)/(, n—oo. (3.8)

1t is easily verified that the first coefficients in (3.2) and (3.8) are the same.

Remark 3.1 The restriction on x(x > —1) made earlier can be dropped by applying partial integration on the second
integral in (3.7) in the form u*du = (x +1)"'du*~'. Then a similar integral arises and the sine-function will tackle
the factor (x +1)! in the limit x —»—1.

Remark 3.2 When x =0,1,2,---, we can interprete (3.8) by first multiplying both sides by
T(—x)lim,_,, T(—=x)F,(x) ,m = 0,1, - -, is well-defined, since now F,(m) vanishes identically. For (3.2) such an
interpretation is not possible.

The expansion of the function G,(x) in (3.5) also follows from standard methods in asymptotics. Recall that
G,(x) is the integral (3.6) along Rez = z5 = n /x. Again we have to consider different values of (1—-z)* at
zo+1i0, zo—i0. After straightforward manipulations we arrive at

ezy" e (I+it—1/zp)

G,,(X) - Re{e—w.x fem'r—nln(l‘i'i-r) .
[}

dr). (3.9)

To obtain a first apporximation we replace i7—In(1+ir) by the first non-vanishing term of its Maclaurin expansion,
ie, —%-rz, and (1+i7—1/z¢)* /(1+ir) by unity. Then we have

s
Gp(x) ~ (27n) *e"(n / x)* "cos(mx), (3.10)

which for x = m = 0,1,2, - - - agrees with the right-hand side of (3.4), when we replace the factorial by its Stirling
approximation. Higher approximations can easily be obtained from (3.9), but will not be given here.

Remark 33. The cosine-term in (3.10) does not appear in all higher approximations of G, (x).
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